Showing posts with label remote. Show all posts
Showing posts with label remote. Show all posts

Wednesday, September 25, 2013

Infra Red Remote Control Tester

This little circuit is invaluable for quick go/no-go testing of just about any remote control transmitting infra-red (IR) light. The tester is battery-powered, built from just a handful of commonly available and inexpensive parts, and fits in a compact enclosure. Schmitt trigger gate IC1f is used as a quasi-analogue amplifier with, unusually, an infra-red emitting diode (IRED) type LD274 acting as the sensor element. An R-C network, C1-R2, is used at the output of the gate because all IR remote controls transmit pulse bursts, and to prevent the output LED, D2, lighting constantly when day-light or another continuous source of IR light is detected.

Circuit diagram:



Cased project:
This creates a useful ‘quick test’ option: point the tester at direct daylight, and the indicator LED should light briefly. The sensitivity of the tester is such that IR light from remote control is detected at a distance of up to 50 cm. The circuit is designed for very low power consumption, drawing less than 1 mA from the battery when IR light is detected, and practically no current when no light is detected. Hence no on/off switch is required. The construction drawing shows how the tester may be ‘cased’ using a small ABS case from Conrad.

COMPONENTS LIST
Resistors:
R1,R2 = 10MW
Capacitor:
C1 = 10nF
Semiconductors:
D1 = LD274 (Siemens)
D2 = LED, 3mm, low-current
IC1 = 74HC14
Miscellaneous:
Bt1 = 3V Lithium cell with solder tags, e.g.type CR2045 (560 mAh)
See More Detail[...]

Wednesday, September 4, 2013

IR Remote Control Extender Mark 3

This Mark3 version of the Infra Red extender is a special version designed to control appliances that use high frequency modulated IR remote controls.


Notes:
IR appliances use pulses (control signals) sent over a modulated IR carrier wave. The carrier wave may be modulated at various frequencies, 36-38KHz being the most popular.Some Satellite receivers use even higher frequencies than this. The IR1 remote module receives an infra red signal and separates control pulses from the modulation. To re-transmit, a 555 timer is configured as an astable oscillator. The 555 timer is controlled by the signal on the reset pin, high generating a carrier and low no carrier. Each control pulse turns on the oscillator for the duration of a logic high signal and off for a logic 0 signal, thereby creating a newly modulated IR signal. The IR module, part number IR1 is available from Harrison Electronics in the UK, IR1 may not be listed in their catalogue but if you ask for an IR1, they will send you the correct part. The IR1 arrives in a small aluminium case, the connections viewed from underneath are shown below:

Infra Red Module, IR1 Pinout

Harrison Electronics have limited supplies of the IR1 but as a replcement a standard IR module like the TSOP1838 may be used. The pinout is shown below:


The carrier frequency is determined by R1 and C3, values shown work at 39.7 kHz, but these may be altered to provide different carrier frequencies. The final CMOS 4049 invertor ensures that under "no signal" conditions both LEDs are also off.

Parts List:

C1 100u 10V
C2 100n polyester
C3 120p silver mica
C4 100n polyester
R1 150k
R2 2k2k
R3 1k
R4 47R 1W
Q1 BC109C
IC1 LM7805
IC2 555
IC3 IR1 module from Harrison Electronics or TSOP1838
IC4 4049 CMOS Invertor LED1 Red LED (or any visible colour)
LED2 TIL38 or part YH70M from Maplin Electronics


PCB Layout (courtesy of Claudio from Italy):
First the component side of the board is shown below.


And now thw pcb itself.

The Mark 3 circuit is an improvement over the Mark 1 and 2 circuits, however the drive from Q1 inverts the polarity of the output pulse. In some cases this can cause problems so the output stage is rewired as an emitter follower. This is the basis for the Mark 4 circuit. If you still have problems then I would recommend trying the Mark 4 circuit.

See More Detail[...]

Saturday, April 13, 2013

Rise Nikon Camera Remote Control

Overview

This is an IR remote control for Nikon cameras. It is compatible with the Nikon ML-L3 remote control. Supported cameras include: D40, D40X, D50, D60, D70, D70s, D80, Coolpix 8400 8800. This design is based on an idea from http://www.bigmike.it/ircontrol/.

Hardware

The circuit is extremely simple: an ATtiny13V, button, transistor, resistor, IR diode and 3V battery. You could even omit the transistor and resistor, and connect the IR diode directly to the ATtiny13V, but that will limit the LED current and therefor the range.

schematic

I chose to power the circuit permanently, and connect the button to an input, instead of controlling the power with the button. This ensures that the IR sequence is always completely sent, even when you release the button too early, and that contact bounce may be filtered. The standby power consumption is so low, about the same as the self-discharge rate of the lithium battery, that this does not really affect the battery life.
The internal oscillator of the ATtiny13V is used as a clock source, which seems to be sufficiently accurate. To get optimal results, you may want to calibrate the internal oscillator. See main.c for details.
See More Detail[...]

Saturday, April 6, 2013

Infrared Remote Control Decoder Circuit



This is a circuit for infrared Remote Control Decoder circuit. This circuit uses the SAA3049A which is used to check and convert the received coded data (RECS80/RC5) into latched binary outputs. This is the figure of the circuit;


We can uses several device in one location because the device address can be hard-wired for a particular address. The output of this device are the received data and address. This device has several feature such as it is suitable for low SAA3049A and low voltage supply current applications, it can accept RC5 codes with bi-phase transmission (SAA3006, SAA3010) or RECS80 codes with pulse position modulation (SAA3004, SAA3007, SAA3008) and it can Decodes 64remote control commands with a maximum of 32 sub-addresses. Besides that a maximum commands of this device is up to 2048 by adding  circuitry for binary decoding, for example 1-of-16 decoder (HEF4515). 

[Schematic source: NXP Semiconductor Application Notes]

See More Detail[...]