Saturday, August 31, 2013

Pulse Timer Control Relay Circuit with IC555

Today we would like to offers solutions for a set time for take control relay and take NO. / NC. contact to apply to control other devices . such as disable or enable the device.function of this circuit is using IC555 to determine the pulse and a resistor R1 to the period of time.

Pulse Timer Control Relay Circuit Diagram


Pulse Timer Control Relay Circuit with IC555

R1       #Seconds
100k         2
220k         3
470k         6
1M           15

The increase provides more time to increase the value of the Capacitor.

Part List
R1 = 1 Meg, Preset Pot
R2 = 10K  
R3,R4 = 1K
C1 = 10uF, 16V
C2 = 0.01uF
T1 = BC547 (Gen Purp NPN)
T2 = 2N2222 (Hi Current NPN)
D1 = 1N4001 (Gen Purp Si)
IC1 = 555 (Lo-Power version)
RLA1 = Relay, 9V (amps of your choice)
See More Detail[...]

Thursday, August 15, 2013

Two Basic Motor Speed Controllers

Here are two simple 12V DC motor speed controllers that can be built for just a few dollars. They exploit the fact that the rotational speed of a DC motor is directly proportional to the mean value of its supply voltage. The first circuit shows how variable voltage speed control can be obtained via a potentiometer (VR1) and compound emitter follower (Q1 & Q2). With this arrangement, the motor’s DC voltage can be varied from 0V to about 12V. This type of circuit gives good speed control and self-regulation at medium to high speeds but very poor low-speed control and slow starts. The second circuit uses a switchmode technique to vary motor speed.

Circuit diagram:
basic-motor-speed-controller-circuit-diagram1
Fig.1: a very simple motor speed controller based on a compound emitter follower (Q1 & Q2).

Here a quad NOR gate (IC1) acts as a 50Hz astable multivibrator that generates a rectangular output. The mark-space ratio of the rectangular waveform is fully variable from 20:1 to 1:20 via potentiometer VR1. The output from the multivibrator drives the base of Q1, which in turn drives Q2 and the motor. The motor’s mean supply voltage (integrated over a 50Hz period) is thus fully variable with VR1 but is applied in the form of high-energy "pulses" with peak values of about 12V.

Circuit diagram:
basic-motor-speed-controllers-circuit-diagram2
Fig.2: this slightly more complicated circuit gives better low speed control and higher torque.

This type of circuit gives excellent full-range speed control and gives high motor torque, even at very low speeds. Its degree of speed self-regulation is proportional to the mean value of the applied voltage. Note that for most applications, the power transistor (Q2) in both circuits will need to be mounted on an appropriate heatsink.
 
 
 
Source by : Streampowers
See More Detail[...]

Wednesday, August 14, 2013

Comparator Based Crystal Oscillator

Although a simple crystal oscillator may be built from one comparator of an LT1720/LT1721, this will suffer from a number of inherent shortcomings and design problems. Although the LT1720/LT1721 will give the correct logic output when one input is outside the common mode range, additional delays may occur when it is so operated, opening the possibility of spurious operating modes. Therefore, the DC bias voltages at the inputs have to be set near the center of the LT1720/LT1721’s common mode range and a resistor is required to attenuate the feedback to the non-inverting input. Unfortunately, although the output duty cycle for this circuit is roughly 50%, it is affected by resistor tolerances and, to a lesser extent, by comparator offsets and timings.
 
Comparator Based Crystal Oscillator
If a 50% duty cycle is required, the circuit shown here creates a pair of complementary outputs with a forced 50% duty cycle. Crystals are narrow-band elements, so the feedback to the non-inverting input is a filtered analogue version of the square-wave output. The crystal’s path provides resonant positive feedback and stable oscillation occurs. Changing the non-inverting reference level can vary the duty cycle. The 2k-680Ω resistor pair sets a bias point at the comparator + (Comparator IC1a) and – (Comparator IC1b) input. At the complementary input of each comparator, the 2k-1.8k-0.1µF path sets up an appropriate DC average level based on the output.
 
IC1b creates a complementary output to IC1a by comparing the same two nodes with the opposite input. IC2 compares band-limited versions of the outputs and biases IC1a’s negative input. IC1a’s only degree of freedom to respond is variation of pulse width; hence the outputs are forced to 50% duty cycle. The circuit operates from 2.7V to 6V. When ‘scoping the oscillator output signal, a slight dependence on comparator loading, will be noted, so equal and resistive loading should be used in critical applications. The circuit works well because of the two matched delays and rail-to-rail outputs of the LT1720.
 
 
 
Source by : Streampowers
See More Detail[...]

Tuesday, August 13, 2013

Police Lights associate crystal rectifier Project

This circuit uses a 555 timer that is setup to each runn in associate Astable operative mode. This generates a nonstop output via Pin three within the type of a sq. wave. once the timers output changes to a high state this triggers the a cycle the 4017 4017 decade counter telling it to output consecutive sequent output high. The outputs of the 4017 ar connected to the LEDs turning them on and off.

Schematic
Police Lights and LED Project

Parts List

1x - NE555 Bipolar Timer
1x - 4017 Decoded Decade
6x - 1N4148 Diode
1x - 1K Resistor (1/4W)
1x - 22K Resistor (1/4W)
2x - 4.7K Resistor (1/4W)
6x - 470 Resistor (1/4W)
1x - 2.2µF Electrolytic Capacitor (16V)
2x - BC547 NPN Transistor
2x - LED (Blue)
2x - LED (Red)
1x - 9V Voltage Battery    Link
See More Detail[...]

Sunday, August 11, 2013

Power Mosfet Inverter Circuit Diagram

This Power Mosfet Inverter Circuit Diagram can deliver .high-voltage ac or dc, with a rectifier and filter, up to several hundred volts. The secondary and primary of T1-a 12.6 to 440 V power transformer, respectively-are reversed; e.g., the primary becomes the secondary and the secondary becomes the primary. Transistors Q1 and Q2 can be any power FET. Be sure to heat sink Q1 and Q2. Capacitors C1 and C2 are used as spike suppressors. 

 Power Mosfet Inverter Circuit Diagram


Power Mosfet Inverter Circuit Diagram
See More Detail[...]

Saturday, August 10, 2013

3000W Stereo Power Amplifier Circuit


Circuit Power Amplifier has a power output of up to 1500W RMS power amplifier circuit is often used to power sound systems keperlun for outdor. In the final image can be seen a series of power amplifiers using 10 sets of power transistors for the ending.

This power amplifier circuit using a transistor amplifier from the front, signal splitter, driver and power amplifier. Current consumption required is quite large power amplifier that is 15-20 A 1500W power amplifier circuits for this. Supply voltage needed by the power of this amplifier is the optimal working order symmetrical 130VDC (130VDC-130VDC ground). 1500W amplifier circuit below is a picture series of mono, stereo if you want to make it necessary to make two copies of the circuit. For more details can be viewed directly image the following 1500W power amplifier circuit.

The series of High Power Amplifier 1500W With Transistor
Click Image to view larger


In the above series of power amplifer 1500W is equipped to control a DC Offset function to set the power amplifier is turned on at the moment and with no input signal then the output should be 0VDC. Then also equipped with a flow regulator to the power amplifier bias. Final part of this power amplifier requires adequate cooling to absorb the heat generated. Power amplifier is not equipped with a speaker protector, therefore it is necessary diapsang protector on the speaker output so that when the power amplifier is not the case turned on the beat to the speaker that can damage the speaker.
See More Detail[...]

Friday, August 9, 2013

All Constructing Various DC Power Supplies Projects



One of the fundamental building blocks of electronics challenge is building your personal DC energy supplies from an AC source of one hundred ten V.A.C or 220 V.A.C.The fashionable DC voltages which are essential to energy up the devices are frequently within the vary of three V DC to 30 V DC. Usually the fixed types of DC voltages are 5V, 9V, 12V, 15V & 18V DC. With the development of know-how, plenty of instruments are the use of one.8 V DC nowadays. S M P S is turning into in style this existing day because the demand for miniaturization due to area constraints will increase.

Take note that for linear energy supply projects, you wish to make use of a step down power transformer to step down the AC voltage from the road voltage of 110 V.A.C or 220 V.A.C ahead of the usage of it to produce to the diode bridge.
See More Detail[...]